Looping Out Introns to Help Splicing

نویسنده

  • Richard Robinson
چکیده

February 2006 | Volume 4 | Issue 2 | e41 | e34 One of the most surprising discoveries in molecular biology was that a gene’s coding region is broken up into smaller pieces (the exons) interrupted by noncoding portions called introns. After the DNA is transcribed into RNA, and before the RNA can leave the nucleus, the introns must be cut out and the exons spliced together. Since introns were discovered in 1977, the details of the splicing operations have been a major object of study. For splicing to occur, the ends of an intron must be brought into close proximity, and a number of proteins have been identifi ed that aid this process. However, the function of one group of these proteins, called the hnRNP proteins, which are known to associate with prespliced RNAs, has not been clear. To date, the most accepted role for a subgroup of these proteins, the hnRNP A/B proteins, has been a negative one, since binding of these proteins to certain exons can prevent their inclusion in the mature RNA. In this issue, Rebecca Martinez-Contreras, Benoit Chabot, and colleagues show that when hnRNP A/B or hnRNP F/H proteins bind to intron sequences near splicing signals, they can stimulate splicing. The authors began by making long artifi cial RNA segments, which are poorly spliced due to the more than 1,000 nucleotides separating the two ends of their introns. By inserting hnRNP A/B–binding sites in the intron near the future splice junctions, they could increase splicing effi ciency 4fold. The binding sites did not have to be on the RNA itself, as long as they stayed close to the ends of the intron, as shown when the authors tethered short pieces of RNA to each end of the intron. These short RNAs contained the binding sites on their tails, which hung loose in approximately the right place next to the intron. This allowed the hnRNP A/B proteins to take up position near the ends of the introns, and splicing effi ciency was increased. When binding sites were placed well into the interior of the intron, either on the intron itself or on an RNA tail, splicing was ineffi cient. Similar results were found when binding sites were inserted for a different binding protein group, hnRNP F/H. The authors propose a model for these results in which the bound hnRNP proteins interact with one another, clasping the two ends of the intron together, forming a loop to help the splicing machinery remove the intron. The authors further support their model by showing that splicing could also be stimulated just by inserting complementary RNA sequences at each end of the intron. These have the ability to bind to one another, forming the intron into a loop. However, they note that in some introns, only one hnRNP A/B site, positioned on the upstream end, is needed to promote splicing, and it does so nearly as well as when sites at both ends are present. The reason may lie in the particular introns that display this behavior—they contain a sequence which may itself bind an hnRNP A/B protein, thus providing the missing binding site and leading to loop formation. Confi rmation or refutation of this hypothesis will have to await future experiments. Notwithstanding, the model is generally appealing because the two ends of many human introns are enriched in binding sites for these proteins. Overall, this mechanism suggests that hnRNP proteins can remodel the structure of prespliced RNAs, a property, the authors suggest, that could be important for both splicing and alternative splicing in a wide variety of genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression.

Alternative splicing plays an important role in generating proteome diversity. The polypyrimidine tract-binding protein (PTB) is a key alternative splicing factor involved in exon repression. It has been proposed that PTB acts by looping out exons flanked by pyrimidine tracts. We present fluorescence, NMR, and in vivo splicing data in support of a role of PTB in inducing RNA loops. We show that...

متن کامل

Role for gene looping in intron-mediated enhancement of transcription.

Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in I...

متن کامل

Stoichiometry of a regulatory splicing complex revealed by single-molecule analyses

Splicing is regulated by complex interactions of numerous RNA-binding proteins. The molecular mechanisms involved remain elusive, in large part because of ignorance regarding the numbers of proteins in regulatory complexes. Polypyrimidine tract-binding protein (PTB), which regulates tissue-specific splicing, represses exon 3 of alpha-tropomyosin through distant pyrimidine-rich tracts in the fla...

متن کامل

Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality

Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored o...

متن کامل

Introns in Cryptococcus

In Cryptococcus neoformans, nearly all genes are interrupted by small introns. In recent years, genome annotation and genetic analysis have illuminated the major roles these introns play in the biology of this pathogenic yeast. Introns are necessary for gene expression and alternative splicing can regulate gene expression in response to environmental cues. In addition, recent studies have revea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Biology

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2006